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Abstract The Martian surface preserves evidence of a global climate transition from wetter to drier
conditions, but the nature of the fluids involved in this evolution remains poorly constrained. In Gale crater, the
clay-sulfate transition and presence of evaporite mineral assemblages can provide insights into the properties of
these fluids and the timing of environmental change. While traversing through the Chenapau member of the
sulfate-bearing unit in Gale crater, the Curiosity rover encountered a set of dark-toned veins enriched in Na and
ClL, suggestive of halite. However, previous halite detections in Gale crater have been limited to occurrences
along the edges of Ca-sulfate veins or nodules, suggesting a unique origin for this set of veins. Here, we
hypothesize that these veins formed through the infiltration of saline fluids along pre-existing hydraulically
induced fractures. These fluids permeated into the host rock beyond the primary fractures, precipitating halite
and cementing the fractures. Using Mastcam and ChemCam spectra, we found that the veins displayed a
downturn in the near-infrared wavelengths, consistent with the presence of ferrous iron. Furthermore, textural
analysis of the veins reveals host rock material preserved within the veins. ChemCam laser-induced breakdown
spectroscopy observations also support the presence of a minor Fe component in the veins and halite
concentrated along the center of the fractures. Our results demonstrate that these veins represent a distinct class
of diagenetic features in Curiosity's mission that record an important transition in near-surface fluid chemistry
consistent with a transition to a drier environment.

Plain Language Summary Mars experienced a major climate transition from wet to dry, and this
transition is recorded in the geologic units in Gale crater that are being explored by the Curiosity rover. Data from
Curiosity reveal dark-toned, Na- and Cl-rich deposits filling fractures within the rocks (veins), indicating the
presence of halite (salt) in the sulfate-bearing unit. This finding is notable because previous halite detections in
Gale crater have been isolated to individual grains or along the boundaries of pre-existing veins, suggesting a
different formation process for the veins described here. We investigated images and data from Curiosity's
instruments to characterize the chemical composition and formation of these veins. We found that these veins
likely formed when sedimentary layers were buried in Gale crater, leading to a large overburden pressure and the
over pressurization of the fluids trapped in these rocks. The over pressurized fluids then caused the rocks to
fracture. Later, saline fluids flowed along the fractures and a small degree beyond the fracture into the surrounding
host rock, depositing halite. These findings record a change in fluid chemistry that supports a transition from a
wetter to a drier environment, and that fluid stability continued even in the drier sulfate-bearing unit.

1. Introduction

The geologic record of Mars preserves a story of climate change, as evidenced by changes in mineralogy, ancient
outflow channels, layered sedimentary deposits, and loss of water to space (e.g., Bishop & Rampe, 2016;
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Jakosky, 2021; Malin & Edgett, 2000; Rodriguez et al., 2015; Scheller et al., 2021). One of the reasons Gale crater
was selected as the landing site for the Mars Science Laboratory (MSL) Curiosity rover was because of the
upward transition from phyllosilicate-enriched to sulfate-enriched strata observed in orbital data of the crater's
central sedimentary mound, Aeolis Mons (informally Mount Sharp) (e.g., Milliken et al., 2010; Thomson
et al., 2011). This transition suggests a shift from an ancient wetter environment to a drier one (Bibring
et al., 2006; Grotzinger et al., 2012; Milliken et al., 2010). Curiosity found mudstones in Yellowknife Bay that
likely formed in a neutral pH, shallow lacustrine environment capable of supporting life (Grotzinger et al., 2014).
As Curiosity has ascended the lower flank of Mount Sharp, the rover has found evidence for a drying environment
as indicated by, for example, the presence of desiccation cracks and polygonal ridges (Rapin et al., 2023; Stein
et al., 2018), dehydration of Ca-sulfate veins (Rapin et al., 2016), the transition from clays to crystalline Mg-
sulfates (Chipera et al., 2023), and the presence of aeolian scours (Roberts et al., 2025). However, the exact
nature and timing of this transition remain unclear, including whether the transition was abrupt or involved a
longer period of wet-dry cycling.

Veins can provide geochemical constraints to this transition because of their ability to record the chemistry of
post-depositional fluids that have altered rocks. The types of fractures that vein minerals fill also provide in-
formation about the stresses that have affected the rock post-emplacement. Throughout the mission, Curiosity has
encountered diverse diagenetic features such as veins (Banham et al., 2025; De Toffoli et al., 2020; Kronyak
et al., 2019; L’Haridon et al., 2018; Nachon et al., 2014; Rapin et al., 2016), nodules (Gasda et al., 2022; Meyer
et al., 2024; Stack et al., 2014; Treiman et al., 2023; VanBommel et al., 2023), concretions (Banham et al., 2018;
Seeger & Grotzinger, 2024; Wiens et al., 2017), ridges (Banham et al., 2024; Léveillé et al., 2014; McLennan
et al., 2014), and dendritic aggregates (Nachon et al., 2017) that reveal distinct episodes of fluid interaction with
rocks.

In 2023, Curiosity encountered dark-toned fracture-filling material while traversing the Chenapau member of the
Mirador formation above the Marker Band Valley (Figure 1) (e.g., Roberts et al., 2024). Elemental chemistry
from Curiosity's ChemCam instrument showed that these fracture-fills are enriched in Na and Cl, suggestive of
halite (Farrand et al., 2023; Meslin et al., 2024). Prior to entering the sulfate unit, detection of halite was limited to
isolated grains in bedrock or along the edges of Ca-sulfate veins (Meslin et al., 2022, 2024; Thomas et al., 2019).
These Na- and Cl-enriched fracture fills could represent a distinct episode of fluid flow, characterized by more
arid conditions that allowed for the precipitation of contiguous halite (Meslin et al., 2024). Here, we investigate
the composition, texture, and morphology of these veins in more detail through a combination of Mastcam and
ChemCam data to understand their formation mechanism and relation to the surrounding bedrock.

2. Background
2.1. Geologic Context

Curiosity has been exploring the Gale crater, a ~155 km diameter impact crater situated along the dichotomy
boundary (Milliken et al., 2010). The rover has been ascending Mount Sharp (Aeolis Mons), a 5.5 km thick
sequence of sedimentary deposits inside Gale crater. Mount Sharp is the eroded remnant of the sedimentary
infilling of Gale (Malin & Edgett, 2000). Immediately after crater formation, ~3.7 Ga (Deit et al., 2013; Tanaka
et al., 2014; Thomson et al., 2011), the crater was infilled by fluvio-lacustrine sediments during an earlier wetter
climate, followed by aeolian-dominated strata as conditions changed to a drier climate. After accumulation of the
Mount Sharp group sequence was completed, there was a prolonged episode of aeolian exhumation, which
removed as much as 2/3 of the crater fill, leaving proto-Mount Sharp at the center of Gale. Subsequent deposition
followed this major aeolian deflation event, preserved in the overlying Siccar Point group (Watkins et al., 2022).
The Aeolian Stimson formation, and the overlying Gediz Valis ridge are the only two stratigraphic units so far
encountered in this group.

The floor of Gale crater consists of the Bradbury group, which is characterized by interstratified conglomerates
and sandstones that overly the fluvio-lacustrine mudstones of the Yellowknife Bay formation (Grotzinger
et al., 2015). The Mount Sharp group overlies the Bradbury group and consists of the Murray, Carolyn Shoe-
maker, and Mirador formations (e.g., Caravaca et al., 2022; Cardenas et al., 2023; Edgar et al., 2024; Fedo
et al., 2022; Grotzinger et al., 2014; Meyer et al., 2024; Roberts et al., 2024; Stack et al., 2019; Vasavada, 2022).
The Murray formation is primarily composed of laminated lacustrine mudstones and occasional cross-stratified
sandstones (Rampe et al., 2017). After visiting Vera Rubin ridge (L. A. Edgar et al., 2020), an erosion-resistant
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Figure 1. Mastcam enhanced Bayer-filter color images of dark-toned veins observed in the Chenapau Member. (a) Charvein, mcam04039, sol 3824. (b) Jardinopolis,
mcam04065, sol 3830. (c) Kamani Kreek, mcam04120, sol 3842. (d) Crique Guillaume, mcam04259, sol 3865. (e) Mega Spilaio, mcam04314, sol 3873. (f) Samos,
mcam04515, sol 3906. Vein heights are reported in Table 1. Image credit: NASA/JPL-Caltech/MSSS.

ridge enriched in hematite, the rover traversed south to the phyllosilicate-enriched Glen Torridon region (Bennett
et al., 2023). Within the Glen Torridon region, the contact between the upper Murray and Carolyn Shoemaker
formations is characterized by a transition from the lake-margin deposits to fluvial interstratified sandstones and
mudstones (Fedo et al., 2022). The Carolyn Shoemaker formation is separated from the start of the Mirador
formation by a shallow erosional unconformity (Meyer et al., 2024). The lower Mirador formation contains
meter-scale cross-bedded sandstones, marking a transition to a drier environment dominated using aeolian
processes (Caravaca et al., 2023; L. Edgar et al., 2024; Meyer et al., 2024).

The clay-sulfate transition begins in the Mercou member of the Carolyn Shoemaker formation and continues until
the Amapari member of the Mirador formation. The clay-sulfate transition is characterized by a change from
enrichment in phyllosilicates to hydrated amorphous Mg-sulfates (Chipera et al., 2023; Meyer et al., 2024; Rampe
et al., 2022). On Sol 3560 (10 August 2022), Curiosity entered Marker Band Valley, the designated start of the
layered sulfate-bearing unit (Roberts et al., 2023). The Chenapau member overlies the Amapari Marker Band, a
laminated and resistant unit made of high-Ca pyroxene that marks the start of the layered sulfate-bearing unit
(Figure 2) (Gasda et al., 2024; Mondro et al., 2025). The Chenapau member is characterized by shallow, planar
bedding and pale, laminated bedrock bearing nodules and dark-toned materials (O’Connell-Cooper et al., 2024;
Roberts et al., 2024). Alpha Particle X-ray Spectrometer (APXS) measurements in the Chenapau member show
enrichment in MgO, SO;, and CaO relative to the mean Mount Sharp group, and Na enrichment similar to the
Mount Sharp group but more abundant (O’Connell-Cooper et al., 2025). While exploring the Chenapau member
of the Mirador formation, Curiosity encountered a set of dark-toned fracture filling materials between Sols 3824
and 3912 (Figure S1 in Supporting Information S1). Only one dark-toned vein, Kythira, was measured by APXS,
which has 13.17 wt.% Na,O and 19.75 wt.% C1 (O’Connell-Cooper et al., 2025). These dark-toned fracture fills
occurred between the Ubajara (UB) and Sequoia (SQ) drill targets (Figure 2). Analyses of these drill targets reveal
that both contain a significant amorphous phase, in addition to minor amounts of siderite and hydrated salts such
as gypsum and starkeyite (Clark et al., 2024; Tutolo et al., 2025).
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Figure 2. (a) Map of Curiosity's traverse (gray line) though the upper clay-sulfate transition and Amapari Marker Band (yellow line). The light blue box (Figure S1 in
Supporting Information S1) marks the location of the dark-toned veins analyzed in this paper and the black circles indicate drill targets. Image credit: NASA/JPL/
University of Arizona (b) stratigraphic column of the Carolyn Shoemaker and Mirador Formations of the Mount Sharp Group, annotated to show the clay-sulfate
transition (red) and occurrence of dark-toned veins (blue).

2.2. Previously Observed Veins

A variety of fracture-filling materials and veins were detected previously in Curiosity's mission, recording distinct
post-emplacement aqueous events. For example, light-toned Ca-sulfate veins were observed throughout the
Bradbury and Mount Sharp groups (De Toffoli et al., 2020; Kronyak et al., 2019; L’Haridon et al., 2018; Nachon
etal., 2014). These Ca-sulfate veins are proposed to have formed initially as infilling of the Gale crater basin led to
burial of sediments, allowing for overpressure of fluids and hydrofracture of the host rocks (De Toffoli
et al., 2020). Gypsum deposited by sulfur-rich fluids along these fractures likely dehydrated to bassanite under
later arid conditions (Rapin et al., 2016). In the Murray formation, some of these veins show an enrichment in Fe
and Mg that indicates changing redox conditions in the fluids that interact with Gale crater stratigraphy
(L’Haridon et al., 2018). In the Pahrump Hills member of the Murray formation, three types of veins were
discovered: gray veins, light-toned veins, and dark-toned veins (Kronyak et al., 2019). The gray veins occurred as
raised ridges with elevated Mg and Ca. Gray veins in this area also occurred along the edges of light-toned veins
rich in Ca-sulfates, suggesting that sulfate fluids reutilized the same fractures (Kronyak et al., 2019; Nachon
etal., 2017). Dark-toned veins occurred as smooth platy material enriched in Fe, K, and trace elements compared
to the host rock, suggesting they formed under hydrothermal to mildly acidic conditions. In the clay-rich Glen
Torridon region, dark-toned Fe and Mn veins may have formed during warmer, more reducing conditions created
by hydrothermal fluids (Gasda et al., 2022).

2.3. Previous Halite Detections

The presence of halite on Mars is significant because chloride salts are typically the last mineral to precipitate out
of saline solutions, placing constraints on fluid chemistry and timing (Nachon et al., 2014; Tosca &
McLennan, 2006). Compared to Earth, the abundance of basaltic weathering on Mars can buffer the acidity of
sulfate solutions and favor the precipitation of carbonates and chlorides (Rapin et al., 2019; Tosca &
McLennan, 2006). Throughout Curiosity's journey, chlorine has been detected at <3 wt.% Cl in rocks and soils
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Table 1 (Thomas et al., 2019). In the Murray formation, Na and Cl enrichment
Mastcam Multispectral Images Used in Our Analysis of Dark-Toned Veins consistent with halite were limited to along the margins of Ca-sulfate veins
Sol Sequence Target Vein height (cm) anq 1sola.ted graln§ .(~15 wt.% NaCl). in rocks (Thomas f?t a}., 2(.)19).. Due to
halite's high solubility and the sporadic occurrence of halite in this unit, these
3824 mcam04039 Charvein 4.5-6 salts are interpreted to have formed by late-stage Ca-sulfate fluids that dis-
3830 mcam04065 Jardinopolis 0.7-2.6 solved primary evaporitic deposits of halite and mobilized Na and Cl ions
3842 mcam04120 Kamani Kreek 1-5 (Rapin et al., 2019; Schwenzer et al., 2016; Thomas et al., 2019). These saline
3846 meam04141 Crique Rubis 14-16 fluids later precipitated along fractures, leading to the deposition of Ca-sulfate
3856 mcam04196 St . veins with halite at their margins (Thomas et al., 2019). Upon entering the
) ) sulfate unit, detections consistent with halite increased significantly (up to 35
3865 meam04259 Crique Guillaume 6-7:5 wt.% NaCl) and began to occur as contiguous laminae (Berger et al., 2023;
3873 mcam04314 Mega Spilaio 1.5-17 Meslin et al., 2022, 2024; O’Connell-Cooper et al., 2024). Some of these
3887 mcam04395 Paros* x halite-rich laminae are even crosscut by Ca-sulfate veins, suggesting that they
3906 mcam04515 Samos* X were not dissolved by later calcium-sulfate fluids (Meslin et al., 2024). These

Note. *Vein height measurements of “x”” denote veins that we were unable to
measure in 3D projections of Mastcam images due to their distance from the

rover.

halite-rich features may have formed by the dissolution and reprecipitation of
primary evaporitic beds and likely represent a more arid period in Gale cra-
ter's history (Meslin et al., 2024).

3. Methods
3.1. Mastcam Spectra: Collection and Analysis

The Mast Camera (Mastcam) instrument on Curiosity consists of two charge-coupled device (CCD) cameras with
different focal lengths (34 and 100 mm) that can acquire stereo and multispectral images over a broad field of
view surrounding the rover (Bell et al., 2017; Malin et al., 2017). Each camera includes an eight-position filter
wheel allowing for multispectral imaging and the creation of calibrated reflectance spectra in 12 unique wave-
lengths from ~400 to 1,100 nm (Bell et al., 2017). Mastcam cannot unequivocally identify minerals, but this
wavelength range can constrain the oxidation state and hydration of iron-bearing phases in rocks and soils (Rice
et al., 2022). We identified nine dark-toned veins in Mastcam multispectral images (Table 1) from sols 3824 to
3906. For each vein, we created color-composite, and decorrelation stretch (DCS) images (Gillespie et al., 1986)
using the right-eye filters R6 (1,013 nm), R1 (527 nm), and R2 (447 nm) and left-eye filters L6 (1,012 nm), L1
(527 nm), and L2 (445 nm). We analyzed veins in color composite images to characterize vein morphology,
texture, and relation to the host rock. Mastcam multispectral images were calibrated from radiance (/) to radiance
factor (I/F) (relative reflectance) using images of the Mastcam calibration target (caltarget) (Bell et al., 2017,
Wellington et al., 2017). The caltarget consists of three grayscale rings with known reflectance properties, from
which polygonal regions of interest (ROIs) are selected while avoiding dust and shadows on the rings. The
radiance values from the ROIs of each ring are then corrected for illumination, viewing geometry, and dust
deposition according to the calibration pipeline outlined by Bell et al. (2017). The slope of the best-fine line
passing through the average radiance values for each of the three rings is used to determine the calibration co-
efficient. The radiance factor is then divided by the cosine of the solar incidence angle to obtain the relative
reflectance. For each calibrated set of multispectral images, we selected ROIs from the veins, host rocks, and
surrounding soils/sands where available. ROIs were manually selected by inspecting images to locate regions on
veins and host rocks that were spectrally uniform, consistent in texture, and free of shadows or steep edges. We
scaled spectra from the left eye to the right eye at 1,013 nm and then averaged spectra for both eyes to obtain a 12-
wavelength spectrum per ROI. Then, we calculated spectral parameters and band ratios for each spectra obtained
using formulas from Rice et al., 2010, 2022 (Table 2).

3.2. 3D Analysis of Vein Morphology and Texture

We used the Planetary Robotics 3D Viewer (Pro3D) software to visualize Mastcam stereo images and mosaics of
the veins in 3D (Paar et al., 2023). The Planetary Robotics Vision Processing Framework ( PRoVIP) pipeline
(Traxler et al., 2022) uses stereo matching and mosaicking to create a single spherically projected Ortho and
distance map for each Mastcam scene. Rover localization data is used to perform a SPICE-based transform into a
Mars geographic coordinate frame and the resulting regular textured mesh is converted to ordered point clouds
(OPC:s) that are optimized for use in the PRo3D. Viewing the OPCs in Pro3D allows for the spatially consistent
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Table 2
Mastcam Spectral Parameters Calculated for Veins, Host Rocks, and Sands (Rice et al., 2022)
Mastcam parameter Formula Description
527 nm (L1) band depth 1 — 0645R44Rir270 —_ Higher values indicate greater Fe oxidation
- 5 o 76

751 nm (L3)/445 nm (L2) ratio

867 nm (L5) band depth

805 nm (R3)/937 nm (R5) ratio

937 nm (R5)/1,013 nm (R6) ratio

Ros) / Red/blue ratio; higher values indicate greater Fe oxidation
Ryss
Higher values indicate crystalline hematite; negative values consistent with olivine or
pyroxene
Higher values associated with broad Fe absorptions in NIR

1 — Rse7
0.556Ry5, + 0.444R g,

Rsos / R
937
Higher values with a flat NIR profile are consistent with a hydration band at 980 nm; higher

Roy; . . . . . .
/R1013 values with larger 805 nm/937 nm ratios consistent with ferrous absorptions by olivine or
pyroxene

placement of scale bars and lines in various projection modes, as well as measurements including thicknesses and
slopes.

We analyzed 3D reconstructions of the veins in this study to characterize their morphologies, textures, and re-
lationships to their respective host rocks. Compared to 2D analysis, 3D reconstruction of the veins allows for the
quantification of vein orientations, including strike and dip. Additionally, 3D reconstructions facilitate the
visualization of host rock bedding and vein relief, providing insights into the stress regime and mechanics of
fracture formation. In Pro3D, we also measured the heights of the veins by drawing a vertical line annotation with
a linear projection between the base and top of the vein. For veins that were sufficiently close to the rover, vein
heights were measured in multiple regions across the length of the vein, providing a minimum and maximum
height.

3.3. ChemCam Active and Passive Measurements

The ChemCam instrument on Curiosity uses laser-induced breakdown spectroscopy (LIBS) to provide elemental
compositions of rock and soil targets located mostly within 4.5 m of the rover (Maurice et al., 2012; Wiens
et al., 2012). In active mode, ChemCam uses a 1,067 nm laser to ablate a linear array of typically five points on a
given target with a spacing of 1-2 mrad and 350-550-micron spot size (Maurice et al., 2016; Wiens et al., 2015).
The emission spectrum of the generated plasma was then measured by ChemCam's 3 spectrometers that cover a
wavelength range of 240-342 nm (UV), 382-469 nm (VIO), and 474-906 nm (VNIR) (Wiens et al., 2012, 2013).
For each point in an array, ChemCam's laser fires 30 shots, where the first 5 shots are used to remove dust and
omitted from calculations of chemistry. The remaining 25 shots were then averaged to estimate wt. % elemental
composition using a multivariate model (Clegg et al., 2017). ChemCam also contains a remote-micro imager
(RMI) that is used to image the context surrounding LIBS observation points (Le Mouélic et al., 2015). We
identified 7 dark-toned veins targeted by ChemCam (including 2 not targeted by Mastcam) and analyzed their
elemental chemistry to constrain vein composition and variations as a supplement to our Mastcam analyses
(Table 3). We reviewed RMI images to distinguish points that fell on veins and points that fell on the host rock
material adjacent to the veins (Figure 8).

zzle)ll;gam Measurements of Veins and Corresponding Mastcam RO Images

Sol ChemCam sequence Mastcam sequence Target Range (m)
3830 ccam01830 mcam04065 Jardinopolis 391
3831 ccam01831 mcam04071 Sunsas (Charvein) 4.10
3834 ccam01834 mcam04081 Jutica (Jardinopolis Extension) 3.97
3836 ccam04834 mcam04089 Walterlandia 3.90
3842 ccam03841 mcam04122 Sotara 4.04
3851 ccam01851 mcam04173 Calafate (Crique Rubis) 3.29
3873 ccam(01873 mcam04318 Mega Spilaio 2.84
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Table 4
ChemCam Spectral Parameters Calculated for Veins and Host Rocks (Fraeman et al., 2020; Johnson et al., 2015; Manelski et al., 2023)
ChemCam parameter Formula Description
535 nm band depth (BD535) [ R5350 e Higher values indicate greater Fe oxidation

.65Rs00 + 0.

Slope from 750 to 840 nm (S7584) % NIR slope; negative values indicate a downturn consistent with broad Fe?*

absorptions from olivine or pyroxene or ferric absorptions around 860 nm

ChemCam cannot directly determine mineralogy, but the mineralogy can be inferred by fitting the emission peaks
for different elements and correlating them. Prior to peak fitting, we normalized the spectra using the ChemCam
Norm 3 method of dividing the spectra by the sum of the intensities in the VNIR detector (Thomas et al., 2018).
We used a skewed Voigt approximation that is a product of the Lorentzian and Gaussian functions to fit the Cl
peak centered at 837.8 nm and the Na doublet centered at 819 nm. In order to determine the peak area of the Na
doublet, we fit the individual Na peaks at 818.6 and 8§19.8 nm and summed their areas. For each normalized peak,
the local continuum was removed by fitting a second order polynomial to the local minima on each side of the
peak and subtracting this baseline. Then, we used a nonlinear least squares optimization to minimize the residual
between the continuum-removed normalized spectrum and the fitted profile. The peak area for each line was then
estimated by multiplying the height of the fitted peak by the full width at half maximum. We then plotted the
normalized Na versus normalized Cl peak areas and fit a linear regression to the data.

= b Jardinopolis
0.45

—$-Host Rock
Vein
0.4
——Host Rock
—$—-Host Rock | C

500 600 700 800 900 1000
Wavelength (nm)

Crique Rubis

0.25

w
=

0.15

0.1 1

0.05

500 600 700 800 900 1000
Wavelength (nm)

Figure 3. (a) ROI selections for Jardinopolis on a Mastcam color-composite image (mcam04073). (b) Corresponding
Mastcam spectra for selections in panel (a). (c) ROI selections for Crique Rubis on a Mastcam color-composite image
(mcam04141). (d) Corresponding Mastcam spectra for selections in panel (c).
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Figure 4. Comparison of Mastcam spectral parameters for veins (black), host rocks (orange), and surrounding sands (blue). (a) 751 nm/445 nm ratio versus 527 nm band
depth. (b) 805/937 nm ratio versus 937/1,013 nm ratio. (c) 751 nm/445 m ratio versus 867 nm band depth.

ChemCam also has a passive mode where passive reflected solar radiance spectra are acquired after each LIBS
observation, enabling the creation of calibrated visible to near-infrared relative reflectance spectra from 400 to
840 nm on a dust-removed surface (Johnson et al., 2015). We reviewed ChemCam passive spectra for the dark-
toned veins in Table 3 as a complement to the Mastcam spectra analyzed. ChemCam passive spectra cover a
wavelength range that also allows for the identification of iron oxides and oxyhydroxides at a higher spectral
resolution than Mastcam, making this data set a good choice for detailed spectral analysis of veins. However,
ChemCam passive spectra are limited to the 0.65-mrad field-of-view (Johnson et al., 2015), that is a 2.275 mm
spot size at 3.5 m, whereas Mastcam acquires a larger scene including the host rocks, veins, and surrounding
materials (Fraeman et al., 2020).

We applied a Savitzky-Golay filter with a window length of 51 channels to smooth the passive spectra and enable
the distinction between spectral features and noise (Manelski et al., 2023). This window length corresponds to a
width of ~4-8 nm, optimizing the detection of spectral features associated with broader crystal field transitions
and Fe absorptions. We calculated ChemCam spectral parameters for points that fell on the veins and host rocks
using the formulas from Manelski et al., 2023 (Table 4). We calculated these parameters both for points that fell
on the dark-toned veins and for all veins previously measured by ChemCam between sols 0 and 4133. The albedo
of ChemCam passive spectra was estimated using the average reflectance across the entire spectral range.

4. Results
4.1. Mastcam Results

Mastcam spectra of the veins, host rocks, and nearby sands all exhibit a steep positive-sloping ferric absorption
edge followed by a gentle negative-sloping NIR profile (Figure 3). The dark-toned veins in this study display a
weak downturn in the Mastcam long-wavelength filters, from ~750 to 1,000 nm (Figures 3b and 3d). This
downturn is pronounced in the last two Mastcam filters, from 937 to 1,013 nm. Host rock spectra also display a
similar downturn; however, the degree of this downturn is weaker than the one observed in the veins. Some veins,
host rock and sands exhibit a slight absorption at 867 nm in Mastcam spectra that may be attributed to the presence
of hematite (Figure 3). Compared to their host rocks, veins generally exhibit a weaker 527 nm band depth and
lower 751/445 nm ratios (Figure 4a). Veins also have a slightly higher 937/1,013 nm ratio and higher 805/937 nm
ratio than their host rocks (Figure 4b). Veins exhibit greater variability in these parameters than host rocks and
sands, especially for those derived from wavelengths >750 nm. We attribute this variability to compositional
differences within the veins which incorporate varying fractions of ferrous material from the host rock. We do not
interpret the increased variability as an albedo effect since sands also have low albedo but do not display as much
variability. Veins, host rocks, and sand all display negative 867 nm band depths and host rocks display higher 751/
445 nm ratios than veins and sands (Figure 4c).

In Mastcam color composite images, veins appear as dark-toned, linear, fracture-fills or platy to fin-like sheets
that are distinct in color from the host rock (Figure 5). The host rocks display a laminated, nodular to flakey
morphology and parallel/horizontal bedding. In right-eye DCS images, veins appear blue to green while the host
rock appears redder (Figure S2 in Supporting Information S1). The veins generally exhibit sub-horizontal to
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Figure 5. Portions of Mastcam color-composite images of dark-toned veins and host rocks. White arrows indicate fractures
that occur perpendicular to the veins. (a) Jardinopolis, mcam04065, crosscuts a host rock with a flakey morphology.
(b) Charvein, mcam04039, exhibits a nodular texture and crosscuts the laminated horizontal bedding in the host rock.

horizontal orientations relative to the host rock laminations, but in some examples (e.g., Mega Spilaio and
Gorgona) form vertical sheets. The veins are straight to slightly arcuate in shape and occur in isolation (i.e., they
do not exhibit branching or form networks). In some cases (e.g., Charvein, Kamani Kreek, Crique Rubis), the
textures of the veins appear slightly nodular or laminated, resembling that of the surrounding host rock. In other
cases, the veins appear smooth or slightly pitted (e.g., Paros, Mega Silaio). The host rocks surrounding the veins
contain visible fractures oriented perpendicular to the vein fracture (Figure 5). These perpendicular cracks lack
vein or mineral infill and, in some cases, cut through the veins, indicating that they formed later. The perpen-
dicular direction of the cracks also suggests that the rock may have experienced a different stress regime post-vein
emplacement.

4.2. PRo3D Results

In 3D reconstructions of Mastcam stereo images and mosaics, the veins have positive relief appearing as linear
ridges or resistant edges that protrude from the host rock (Figure 6). In some cases, the nodular to platy
morphology of the host rock is clearly preserved within the vein itself (Figure 6a). The boundaries between the
veins and host rocks are often uneven and rough, with some boundaries having a serrated appearance (Figure 6b).
In one example, Kamani Kreek, the host rock below the vein appears recessed (Figure 6¢). The veins generally

b C

Figure 6. PRo3D reconstructions of Mastcam stereo images and mosaics. (a) Sol 3824 mcam04073 Charvein. Platy (white arrow) and nodular textures (white dashed
ellipse) in the vein are also visible in the host rock. (b) Sol 3842 mcam04122 Sotara mosaic. Black arrow indicates a smaller narrow vein in the scene and white arrow
shows a larger vein with serrated edges. (c) Sol 3842 mcam04120 Kamani Kreek. White arrow shows the recessed region of the host rock below the vein.
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Figure 7. Na,O versus FeOT wt.% for dark-toned veins and their host rocks.
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Laser-induced breakdown spectroscopy points on dark-toned veins are
indicated by closed symbols, while points on host rocks are indicated by
open symbols. Black dashed ellipses indicate where the majority of host

rocks plot.

have consistent heights throughout their lengths, with minimal variation be-
tween the minimum and maximum height of the vein (Table 1). In Mastcam
mosaics, multiple veins can be seen in the same scene with veins often dis-
playing a similar orientation and morphology to each other (Figure S3 in
Supporting Information S1).

4.3. ChemCam Active and Passive Results

ChemCam LIBS analysis of veins revealed a significant Na,O component
(~10-42 wt.% Na,0). LIBS points that fall on the host rock immediately
adjacent to veins display lower levels of 1.4-2.2 wt.% Na,O (Figure 7 and
Figure S4 in Supporting Information S1). Host rocks have a significant MgO
component ranging between 3.6 and 16.3 wt.% and a CaO component ranging
between 0.4 and 15.9 wt.%. Dark-toned veins have lower levels ranging be-
tween 0.6 and 5.1 wt.% for MgO and 0-18.2 wt.% for CaO. Reported FeOT
values (which do not distinguish between Fe>* and Fe*™) ranged from 6.3 to
23.5 wt.% and from 0 to 14.9 wt.% for host rocks and veins, respectively.
Raster points that fall along the center of the veins exhibit the highest con-
centration of Na,O. Values of Na,O decrease toward the edge of the veins,
whereas FeOT increases, consistent with dilution (Figure S5 in Supporting
Information S1). There is a positive linear correlation between the normalized
Na and Cl peak areas (Figure 8), possibly consistent with halite. The O and Cl
emission line intensities are not correlated; therefore, it is unlikely that the
observed correlation between Na and Cl is caused by chlorate or percolate
(Meslin et al., 2024; Thomas et al., 2019).

ChemCam passive spectra of veins display lower relative reflectance values than their host rocks (Figure 9). Host
rock spectra exhibit a steeper slope from 500 to 600 nm compared to veins. Host rocks and veins spectra both

exhibit a reflectance maximum near ~750 nm and a slightly negative slope from 750 to 840 nm, in agreement with

Mastcam spectra over the same observed wavelengths (Figure 3). Comparison of these veins with all veins

measured by ChemCam between sols 0 and 4133 reveals that these veins have low albedos of 0.7-0.14, consistent

with their dark-tone appearance (Figure 10b). These veins also displayed positive 535 nm band depths and weakly
negative slopes from 750 to 840 nm (Figure 10a).
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Figure 8. Normalized Cl peak area (837.8 nm) versus normalized Na peak area (819 nm) for ChemCam points on dark-toned
veins. Black dashed line is the linear regression fit.
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Figure 9. (a) ChemCam passive spectra of host rocks, Jutica (Sol 3834, ccam01834, Point 1), Walterlandia (Sol 3836,
ccam04834, Point 4), and Sotara (Sol 3842, ccam03841, Point 1). (b) ChemCam passive spectra of dark-toned veins,
Jardinopolis (Sol 3830, ccam01830, Point 1), Sunsas (Sol 3831, ccam01831, Point 1), Walterlandia (Sol 3836, ccam04834,
Point 1), Sotara (Sol 3842, ccam03841, Point 4), Calafate (Sol 3851, ccam01851, Point 1), and Mega Spilaio (Sol 3873,
ccam01873, Point 1).

5. Interpretations and Discussion
5.1. Evidence for Ferric and Ferrous Components in Veins

Both Mastcam spectra and ChemCam passive spectra of dark-toned veins and their host rocks exhibit a positive
red slope from ~500 to 750 nm caused by the presence of ferric iron (Meslin et al., 2024; Thomas et al., 2019).
ChemCam passive spectra exhibit weak 535 nm absorption bands consistent with the presence of (Fe*™) ferric
iron (Figure 10b). Ferric iron may be exogeneous from Martian dust coating the surfaces of rocks, but the
presence of this feature in dust-cleared ChemCam passive spectra (acquired after LIBS removed dust) favors an
endogenic source of ferric iron within the rocks and veins. This ferric absorption edge is steeper for host rocks,

a b
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Figure 10. Comparison of ChemCam passive parameters for this set of dark-toned veins (colored circles) with all veins (black
circles) measured between sols 0 and 4133. (a) Slope from 750 to 840 nm (S7584) versus 535 nm band depth (BD535).
(b) 535 nm band depth (BD535) versus albedo.
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because of their redder color and increased brightness compared to the dark-toned veins. The steepness of the
ferric absorption edge also increases with increasing oxidation or dust-coating of rocks (Bell et al., 2000; Johnson
et al., 2015). Veins exhibit smaller 527 nm band depths and lower 751 nm/445 nm (Red/Blue) ratios compared to
their host rocks, suggesting a lower degree of oxidation than their host rocks (Figure 4a) (Farrand et al., 2008;
Rice et al., 2022). The 867 nm band depths observed for host rocks and veins are slightly negative, consistent with
the convex NIR profile characteristic of ferrous materials including olivine and pyroxene (Horgan et al., 2020;
Rice et al., 2022). Weak absorptions are visible near 867 nm in Figure 3 due to the presence of minor ferric oxide
phases such as crystalline hematite, but the calculated 867 nm band depth is negative due to the general downturn
in reflectance from 750 to 1,013 nm.

The most distinguishing feature of Mastcam spectra of veins and host rocks is the presence of a downturn or
negative slope in the long-wavelength Mastcam filters from 750 to 1,013 nm (Figure 3). This downturn may be
caused by a hydration signature around 1,000 nm when coupled with a flat NIR profile (Rice et al., 2010) or by the
presence of ferrous iron in olivine or pyroxene (Rice et al., 2022). We observed that both dark-toned veins and
host rocks exhibit large 805/937 nm ratios and large 937/1,013 nm ratios (<1.0), consistent with a broad ab-
sorption near 1,000 nm (Figure 4b). This downturn is unlikely to be caused by hydration because ChemCam LIBS
points on veins lack a strong hydrogen peak at 656 nm (Figure S6 in Supporting Information S1). Additionally,
the presence of even minor numbers of phyllosilicates and basalts can mask the hydration feature in Mastcam
spectra (Eng et al., 2024). Instead, we favor that this downturn is caused by the presence of ferrous components
such as olivine or pyroxene from basalt. ChemCam passive spectra of the veins and host rocks also display a
weakly negative slope from 750 to 840 nm, consistent with broad absorptions near 1 micron due to ferrous iron
(Figures 9 and 10a).

Fitting of the ChemCam Na and Cl peak intensities of the dark-toned veins shows a linear correlation suggestive
of halite (Figure 8). However, halite is spectrally neutral in the VIS-NIR wavelength ranges observed by Mastcam
spectra and ChemCam passive spectra (Crowley, 1991; Farrand et al., 2023). Thus, halite is not associated with
the broad absorption observed in Mastcam spectra near 1,000 nm. ChemCam LIBS points also suggest that veins
still contain a minor component of Fe, with points that fall directly on veins containing as much as 15 wt.% FeOT,
whereas points on the surrounding host rock containing as much as 25 wt.% FeOT (Figure 7). The points with the
highest wt.% Na are concentrated along the center of the veins, as exhibited by decreasing Na and increasing Fe as
the distance from the center of the fracture increases (Figure S5 in Supporting Information S1). This is consistent
with dilution of the primary haltie vein phase with the host rock material.

5.2. Interpretation of Vein Formation

The composition of the dark-toned veins and their morphologies provide context into the nature of the fluids that
formed these veins. Our results from analyses of Mastcam and ChemCam chemical/mineralogical data suggest
that these dark-toned veins are enriched in Na and Cl, consistent with halite, and contain a minor basaltic
component present as ferrous olivine or pyroxene. The gray, dark-toned color of the veins may be explained by
the mixing of ferrous materials with the halite, as the veins are not composed of pure halite. The horizontal and
vertical orientations of the dark-toned veins, as well as the perpendicular unfilled fractures indicate that these
rocks experienced multiple stress regimes and periods of fluid flow.

We hypothesize that these veins formed through a multi-stage process consisting of the initial formation of the
fractures followed by exhumation, halite precipitation, and differential erosion. Initially, sedimentary layers in
Gale crater were buried and compacted by overlying materials leading to lithification of the sedimentary layers
and the trapping of fluids in open pore spaces. These fluids may have been the source brine for the sulfates and
carbonates in the sulfate-bearing unit, possibly derived from a regional groundwater system (Seeger & Grot-
zinger, 2024; Tutolo et al., 2025). As the overburden pressure from the overlying rock increased, these trapped
fluids were over pressurized, eventually overcoming the tensile strength of the rock and leading to hydraulic
fracturing. The hydraulic fracturing origin is consistent with the horizontal and vertical orientations of the
fractures. These orientations indicate that the rocks experienced a significant vertical stress load that led to
fracture along the weaker laminated bedding planes in the rock.
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At alater time, these fractured rocks were exhumed to the near surface where Na- and Cl-bearing fluids infiltrated
the pre-existing fracture network. These saline fluids, concentrated through burial and evaporation, may have
evolved from the same brine that produced siderites and sulfates observed throughout the same unit, as such a
brine was likely long-lived and regionally extensive (Tutolo et al., 2025). Alternatively, these saline fluids may
have been derived from a later brine that is distinct from the one responsible for the siderites and sulfates. Halite
within this unit is mostly limited to diagenetic features such as veins and platy laminations, whereas siderites and
sulfates occur as cement throughout the bedrock, suggesting that the fluids responsible for halite precipitation
were introduced post-lithification and represent the latest stages of fluid activity.

These saline fluids precipitated halite within the fractures and permeated a small degree into the surrounding
host rock. This interpretation is supported by the observation that halite concentrations are strongest at the center
of the veins and decrease toward the boundary between the vein and host rock material, consistent with the
infiltration of saline fluids into the host rock. Differential erosion then led to the preservation of the rocks
containing the dark-toned veins, as halite cemented the surrounding host rock. Mastcam images display clear
evidence of platy and nodular host rock material being preserved within the veins (Figure 6). The positive-relief
of the veins suggests that vein-forming fluids cemented the host rock material leading to the formation of
erosion-resistant edges.

The formation of these veins though hydraulic fracturing is consistent with hypotheses for the formation of Ca-
sulfate veins observed earlier in the mission (Banham et al., 2025; Caswell & Milliken, 2017; Cosgrove
et al., 2022). However, the composition of these veins is unique from previous veins in that they are enriched in
halite mixed with host rock material. While Curiosity has detected halite previously in its traverse, these de-
tections were limited to sporadic occurrences as isolated grains or along the edges of existing Ca-sulfate veins
(Meslin et al., 2024). The presence of halite as a major vein-filling component suggests a distinct fluid flow event
linked to the remobilization of evaporite assemblages or the precipitation of salts from evolving brine solutions.
The preservation of these veins implies that conditions have remained arid since their formation, as halite is highly
soluble and typically the last mineral to crystallize from an evaporating brine. Halite can also trap fluid inclusions
and form crusts that protect organisms from radiation (Gémez et al., 2012), making halite-rich features a possible
target for biosignature detection.

6. Conclusion

Our results present a new class of dark-toned veins in Gale crater that contain halite that permeated into
fractures and preserved host rock material. These veins are significant because they contain the first detection
of halite in contiguous fractures on Mars (Meslin et al., 2024) and have a distinctive composition from
previous veins observed in Curiosity's mission. The preservation of a ferrous component from the host rock
within the veins suggests that these veins formed as saline fluids infiltrated fractures and permeated into the
surrounding host rock material. Notably, the halite in these veins may have come from remobilization of
evaporite deposits or precipitation of brines, signifying that Mars experienced a period of continued fluid
stability even while the planet experienced a global transition to a more arid climate, consistent with other
observations by Curiosity (Clark et al., 2024; Rapin et al., 2021, 2023; Stein et al., 2018). Future studies and
rover operations should continue to target veins for their ability to record how fluid chemistries have changed
throughout Mars's history.
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